Anomaly Detection using Fuzzy Q-learning Algorithm
نویسندگان
چکیده
Wireless networks are increasingly overwhelmed by Distributed Denial of Service (DDoS) attacks by generating flooding packets that exhaust critical computing and communication resources of a victim’s mobile device within a very short period of time. This must be protected. Effective detection of DDoS attacks requires an adaptive learning classifier, with less computational complexity, and an accurate decision making to stunt such attacks. In this paper, we propose an intrusion detection system called Fuzzy Qlearning (FQL) algorithm to protect wireless nodes within the network and target nodes from DDoS attacks to identify the attack patterns and take appropriate countermeasures. The FQL algorithm was trained and tested to establish its performance by generating attacks from the NSL-KDD and CAIDA DDoS Attack datasets during the simulation experiments. Experimental results show that the proposed FQL IDS has higher accuracy of detection rate than Fuzzy Logic Controller and Q-learning algorithm alone.
منابع مشابه
Anomaly Detection using Neuro Fuzzy system
As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locall...
متن کاملAnother Fuzzy Anomaly Detection System Based on Ant Clustering Algorithm
Attacks against computer networks are evolving rapidly. Conventional intrusion detection system based on pattern matching and static signatures have a significant limitation since the signature database should be updated frequently. The unsupervised learning algorithm can overcome this limitation. Ant Clustering Algorithm (ACA) is a popular unsupervised learning algorithm to classify data into ...
متن کاملReinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملFinding Anomaly With Fuzzy C-means ANN Using Semi-Supervised Approach
The FC-ANN (Artificial Neural Network) is used to speed up the technique. The anomaly Outlier detection is primary in various data-mining applications. Outlier detection methods have been suggested for number of application such as, fraud detection, voting irregularity analysis, data cleansing, clinical trials, network intrusion, severe weather prediction, geographic information system, credit ...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کامل